Motion Compensation in High Resolution Synthetic Aperture Sonar (SAS) Images

نویسندگان

  • R. Heremans
  • Y. Dupont
  • Sergio Rui Silva
چکیده

The sequence of echoes detected by an active Synthetic Aperture Sonar (SAS) is coherently added in an appropriate way to produce an image with greatly enhanced resolution in the azimuth, or along-track direction when compared with an image obtained from a standard Side Looking Sonar (SLS). The SAS processing originates from the Synthetic Aperture Radar (SAR) concept. A complete introduction to SAR technique can be found in (Sherwin et al., 1962), (Walker, 1980), (Wiley, 1985) and (Curlander & McDonough, 1991). Raytheon was issued in 1969 a patent for a high-resolution seafloor imaging SAS (Walsh, 1969) and 1971 analyzed a potential system in terms of its resolution and signal-to-noise ratio. Cutrona was the first well-known radar specialist to point out how the various aspects of SAR could be translated to an underwater SAS (Cutrona, 1975). Hughes (1977) compared the performance of a standard SLS to an SAS and showed that the potential mapping rate for SAS was significantly higher than for side-looking sonar. At the time there was an assumption that the instability of the oceanic environment would prevent the formation of SAS imagery. Experimental work, which was performed by Williams (1976) and Christoff et al. (1982), refuted the instability worry. The verification of this assertion performed at higher frequencies by Gough & Hawkins (1989). Later, other concerns regarding the stability of the towed platform were also raised and some railor wire-guided trails where set up to avoid this extra complication. Nowadays there are a multiple of systems as hull mounted SAS systems, towed SAS systems and Autonomous Underwater Vehicles (AUV) systems. For further reading one can find an extended historical background of SAS in (Gough & Hawkins, 1997). Time and experience were needed to adapt SAR algorithms to SAS systems; the SAS systems use smaller radiating elements in proportion to the wavelength, which leads to higher radiation pattern of SAS with respect to SAR. The range migration effect on synthetic aperture processing is significant and pronounced in SAS imagery. An additional difference between SAR and SAS systems is the synthetic aperture time being greater in one order of magnitude in SAS, which leads to a phase corruption due to the medium fluctuations and platform instabilities. Typical synthetic aperture times for SAR are of the order of seconds with a medium coherence of some days, whereas for SAS the typical synthetic aperture time is of the order of several minutes with a similar medium coherence time (Marx et al. 2000). O pe n A cc es s D at ab as e w w w .in te ch w eb .o rg

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi Self-Motion Compensation for a Near-Range Synthetic Aperture Sonar

This paper describes a self-motion compensation technique for a near-range synthetic aperture sonar. We are developing a SBSAS (sub-bottom synthetic aperture sonar), intended for chemical ammunition exploration. Since chemical ammunition is about 20 cm diameter×70 cm length in size, and buried in the sedimentary layers, we chose a low frequency (15 kHz) and applied a synthetic aperture techniqu...

متن کامل

Motion Compensation for High-resolution Synthetic-aperture Sonar Imaging

This paper presents a motion estimation and correction technique for the realization of synthetic-aperture sonar imaging. It utilizes the redundancy provided by the multiple-element receiver array and physical-array sub-images are used for the estimate the motion errors between adjacent receiver positions in the form of phase errors. Subsequently, motion errors can be corrected accordingly by m...

متن کامل

Synthetic Aperture Sonar: Frontiers in Underwater Imaging Revolutionary Sonar Imaging Technology for Undersea Warfare And the Commercial Marketplace

for range-independent resolution—was thought to be untenable due to lack of coherence in the ocean medium, precise platform navigation requirements and burdensome computation rates. With advances in innovative motion-compensation and auto-focusing techniques, signal-processing hardware, affordable and precise navigation sensors, and stable submerged autonomous platforms, synthetic aperture sona...

متن کامل

Interferometric height estimation of the seafloor via synthetic aperture sonar in the presence of mo - Radar, Sonar and Navigation, IEE Proceedings -

An end-to-end simulated processing chain related to an existing synthetic aperture sonar (SAS) system is developed and described, including motion compensation, efficient image formation and autofocus procedures. The processing is extended to include interferometric height estimation capability. It is the goal of the paper to study the application of interferometry to SAS systems in the presenc...

متن کامل

Detection Rate Statistics in Synthetic Aperture Sonar Images

Synthetic aperture sonar (SAS) has proved to be successful for mine hunting and is now robust for generating high-resolution images over wide swath. The subsequent step in the processing is detection, discriminating between mine-like and non-mine-like objects, which is designed to minimise the number of missed mines so that the system can manage the detection rate. Statistical analysis using SA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012